
Journal of Computational Physics 228 (2009) 361–386
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An improved algorithm for in situ adaptive tabulation

Liuyan Lu *, Stephen B. Pope
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
a r t i c l e i n f o

Article history:
Received 14 July 2008
Accepted 12 September 2008
Available online 26 September 2008

PACS:
07.05.Mh
46.15.�x
47.11.�j

Keywords:
ISAT
Function approximation
Tabulation
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.09.015

* Corresponding author. Current address: GM R&
E-mail address: ll267@cornell.edu (L. Lu).
a b s t r a c t

In situ adaptive tabulation (ISAT) is a proven storage/retrieval method which efficiently
provides accurate approximations to high-dimensional functions which are computation-
ally expensive to evaluate. Previous applications of ISAT to computations of turbulent com-
bustion have resulted in speed-ups of up to a thousand. In this paper, improvements to the
original ISAT algorithm are described and demonstrated using two test problems. The prin-
cipal improvements are in the table-searching strategies and the addition of an error
checking and correction algorithm. Compared to an earlier version of ISAT, reductions in
CPU time and storage requirements by factors of 2 and 5, respectively, are observed for
the most challenging, 54-dimensional test problem.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In computer simulations in different disciplines and applications, it is often required to evaluate a function (denoted by
fðxÞ) very many times, for different values of the input, x. For example, if time-evolving partial differential equations are
being solved by a finite-difference method, then some function f may need to be evaluated for each grid node on each time
step based on the current values of the dependent variables at the nodes. If the function f is computationally expensive to
evaluate, then these evaluations can dominate the overall computation cost, and it is natural to seek less expensive ways to
evaluate f, or to obtain an acceptably accurate approximation.

The above problem of the efficient approximation of a function fðx) is extremely general and can be quite varied depend-
ing on: the dimensionality, nx, of the input x; the dimensionality, nf , of the output, f; the distribution of the values of x; the
smoothness of the function f; the number of evaluations required; the accuracy required; and the available computer mem-
ory. For low-dimensional problems (e.g. nx 6 3), often an effective strategy is to use structured tabulation. In a pre-process-
ing stage, values of fðxÞ are tabulated; and then, during the simulation, approximate values of f are obtained by interpolation
in the table. Both the work and the storage necessary to construct the table increase exponentially with nx, which is why this
approach is restricted to low-dimensional problems.

Since its introduction in 1997 [1] the in situ adaptive tabulation (ISAT) algorithm has proved very effective for a class of
higher-dimensional problems (e.g. nx 6 50). The original application of ISAT was in the particle method used to solve the
probability density function (PDF) equations for turbulent combustion [2]. In that case, x consists of the thermochemical
state of a particle at the beginning of the time step (of duration Dt); and f represents the composition at the end of the step
. All rights reserved.

D Center, Warren, MI 48090, USA.

mailto:ll267@cornell.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

362 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
(resulting from adiabatic, isobaric reaction). Evaluating fðxÞ involves solving a stiff set of nf ordinary differential equations
(ODEs) for a time Dt. Typically this requires of order 104 ls of CPU time, whereas ISAT yields an accurate approximation in of
order 10 ls, resulting in a thousandfold speed-up. Based on these timings, if fðxÞ needs to be evaluated for each of 106 par-
ticles on each of 103 time steps, then integrating the ODEs requires over 100 days of CPU time, whereas the same task is
accomplished by ISAT in under 3 hours.

The ISAT algorithm continues to be heavily used for combustion problems both in the authors’ group (e.g. [3–6]) and by
others (e.g. [7–9]); and the algorithm has been incorporated into the ANSYS/FLUENT software [3,10]. ISAT has also been used
in chemical engineering [11–13], in solid mechanics [14], control [15] and the study of thin films and surface reaction
[16,17]. Several variants of ISAT have been proposed and investigated [18–24]. Other methods that have been used to ad-
dress the same problem include: artificial neural networks [25–27]; high-dimensional model representation [28]; PRISM
[29]; orthogonal polynomials [30]; and kriging [31].

The purpose of this paper is to describe and demonstrate several new additions to the original ISAT algorithm, which sig-
nificantly enhance its performance. The next section provides an overview of the ISAT algorithm, and then the new compo-
nents are described in Sections 3–5. In Section 6, quantitative testing of the algorithm is performed to demonstrate the
efficacy of the new methods and to compare the computational performance with a previous implementation of ISAT. (Fur-
ther tests are reported in [32,33].)

The ISAT algorithm makes extensive use of ellipsoids and hyper-ellipsoids (which, for simplicity, are referred to as ellip-
soids, regardless of the dimension of the space). All of the algorithms used in ISAT involving ellipsoids are described in [34].

2. Overview of the ISAT algorithm

The purpose of ISAT is to tabulate a function fðx), where x and f are of dimension nx and nf , respectively. Given a query, xq,
ISAT return faðxqÞ – an approximation to fðxqÞ. It is assumed that f and x are appropriately scaled, with variations of order
unity, so that the two-norm
e ¼ kfaðxqÞ � fðxqÞk; ð1Þ
is an appropriate measure of the approximation error. (There is no difficulty in using a more general definition of the error.)
An essential aspect of ISAT is that the table is built up, not in a pre-processing stage, but in situ (or ‘‘on line”) as the sim-

ulation is being performed. At the beginning of the simulation the table is empty; and the table entries are added as needed
based on queries, xq, generated by the simulation. In this way, only the region of the space which is accessed during the sim-
ulation is tabulated. In many multi-dimensional applications (e.g. combustion), this accessed region may be a tiny fraction of
the whole space, and tabulating it is feasible, whereas tabulating the whole space is infeasible.

Table entries are referred to as leaves (since in the original algorithm they are leaves of a binary tree). The nth leaf in-
cludes: its location xðnÞ; the function value fðnÞ ¼ fðxðnÞÞ; and the nf � nx gradient matrix AðnÞ, which has components
Aij ¼
ofi

oxj
: ð2Þ
This matrix is used to construct the linear approximation employed in ISAT. Given a query, xq, the linear approximation to
fðxqÞ based on the nth leaf is defined as
f l;nðxqÞ ¼ fðnÞ þ AðnÞðxq � xðnÞÞ; ð3Þ
and the error in this approximation is
eðnÞðxqÞ ¼ kf l;nðxqÞ � fðxqÞk: ð4Þ
Given a small error tolerance, etol, ISAT returns approximations to fðx) with errors, e, which are (with reasonable probability)
less than etol. An important concept, therefore, is the region of accuracy (ROA) of a leaf. For the nth leaf, the ROA is defined to
be the connected region containing xðnÞ, within which the error eðnÞðxÞ in the linear approximation is less than the specified
tolerance, etol. In ISAT, the ROA is approximated by an ellipsoid, called the ellipsoid of accuracy (EOA). The EOA is initialized
conservatively, and it may subsequently be ‘‘grown” (or otherwise modified) as additional information about the ROA is
generated.

Briefly stated, the basic operations performed by ISAT on a query, xq, are the following:

(1) Retrieve attempt. A search is performed to identify any EOA which covers the query point. If such an EOA is found, the
linear approximation to fðxqÞ based on that leaf is returned.

(2) Grow attempt. If the retrieve attempt is unsuccessful, then fðxqÞ is directly evaluated. Some number of leaves that in
some sense are close to xq are selected for grow attempts. For each of these selected leaves, the error e in the linear
approximation to fðxqÞ is evaluated, and if it is less than etol then the leaf’s EOA is grown to cover xq. If at least one
grow attempt is successful, then fðxqÞ is returned.

(3) Add. If no grow attempt is successful, then a new leaf (at xq) is added to the table.

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 363
Several of the new contributions described in this paper pertain to the implementation of these processes, specifically:

(1) Searching for an EOA which covers xq.
(2) Searching for suitable leaves as candidates for growing.
(3) Modifying the leaf on a ‘‘grow”.

In addition, a procedure for error checking and correction (ECC) has been incorporated. These new contributions are de-
scribed in the subsequent sections.
3. Retrieve search

Given a query xq, the objective of the retrieve search is to identify any EOA which covers xq. There may be zero, one or
more such EOAs. If at least one EOA covers xq, then the search process is deemed to be complete if it is guaranteed to identify
one such EOA: otherwise it is incomplete. If the search identifies a covering EOA it is deemed to be successful. Any search
strategy inevitably involves testing to determine whether or not a particular EOA covers the query point xq. This testing
is described in Section 3.1. Then, in Section 3.2, we describe a strategy to reduce the associated computation cost which
is based on projecting the problem onto a lower-dimensional affine space.

In subsequent subsections we describe the four search strategies implemented, which are denoted BT, MRU, MFU and
EBT. Each has a different computational cost and a different probability of success. In Section 3.3 we consider the optimal
use of a set of such methods, which leads to the concept of ‘‘effective cost.”

3.1. Ellipsoid covering test

In the current implementation of ISAT, an ellipsoid E is represented by its center c (an nx-vector) and an nx � nx lower-
triangular Cholesky matrix L, so that E is defined by
E � fx j kLTðx� cÞk 6 1g: ð5Þ
Note that with L ¼ URVT being the singular value decomposition (SVD) of L, then the columns of the orthogonal matrix U
give the directions of the principal axes of E, and the length of the principal semi-axes are given by r�1

i , where
r1 P r2 P . . . P rnx are the singular values (i.e., the components of the diagonal matrix R). The radius of the largest ball
covered by E is rin ¼ 1=r1; and the radius of the smallest ball covering E is rout ¼ 1=rnx . In ISAT, the information stored char-
acterizing the EOA of a leaf is: c; L; rin and rout (where, for the nth leaf, c ¼ xðnÞ).

Given a point x, the direct way to determine whether it is covered by an ellipsoid is to evaluate kLTðx� cÞk (see Eq.
(5)), which requires of order n2

x operations. For some cases, however, the question can be decided (in OðnxÞ operations)
by first evaluating r � kx� ck and comparing it to rin and rout. The direct test has to be performed only if r lies between
rin and rout.

3.2. Affine space

The cost of the searching and testing may be reduced by introducing an appropriate na-dimensional affine space (for
1 6 na < nx). Let x ¼ PðxÞ and E ¼ PðEÞ denote the orthogonal projections of x and E onto the affine space. Of order (at most)
n2

a operations are needed to determine if E covers x; and if it does not, then it follows that E does not cover x. On the other
hand, if E covers x, it does not follow that E covers x and so the test in the full-dimensional space (requiring OðnxÞ or Oðn2

x Þ
operations) must then be performed.

Over a large number N of test points, x, let p denote the fraction of tests in which E covers x. Then the number of oper-
ations required by the above two-step procedure scales approximately as Nðn2

a þ pn2
x Þ, compared to Nn2

x for the direct meth-
od. Thus, the relative cost is ðna=nxÞ2 þ p. As na increases from unity, the first contribution ðna=nxÞ2 obviously increases, but
the second decreases (for a sensible choice of the affine space), since the number of ‘‘false positives” decreases (i.e., tests in
which E covers x, but E does not cover x). As may be expected, therefore, for the test cases investigated, there is an optimal
value of na (usually between 2 and 6) which minimizes the cost of searching.

In two tests reported in Section 6.3 with nx ¼ 17 and 54, the speed-ups in retrieving achieved by using the affine space are
approximately 3 and 7.

In ISAT the affine space is formed, and periodically re-formed, based on a principal component analysis of the set of leaf
locations fxðnÞg. The affine space is spanned by the first na principal directions; and the value of na is specified to be as small
as possible such that the r.m.s. deviation of fxðnÞg from the affine space is less than 10% of the r.m.s. variation in the first
principal direction.

The EOAs projected onto the affine space are called PEOAs. Their geometries (i.e., the projections of c and L onto the affine
space and the corresponding values of rin and rout) are stored for each leaf, and are re-calculated whenever the affine space is
redefined.

364 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
3.3. Efficacy of multiple search attempts

As mentioned above, four search strategies, denoted BT, MRU, MFU and EBT (described below) are used successively in
ISAT. The first three perform incomplete searches, whereas EBT performs a complete search. The search concludes when
an EOA is found (by any of the methods) to cover the query point, or when the EBT search completes.

In this subsection, we abstract and analyze the following general question raised by the above use of multiple indepen-
dent strategies. We consider three independent methods A;B and C which successfully perform a task with strictly positive
probabilities pA; pB and 1, respectively, i.e., method C is guaranteed to succeed. The computational costs (e.g. CPU time) of the
three methods are TA; TB, and TC . The question is: which methods should be used, and in which order, so as to minimize the
expected cost of successfully performing the task?

We denote by ABC the strategy of first using method A; if this is unsuccessful then using method B; and if this unsuccess-
ful then using method C, etc. And we denote by TABC the expected cost of this strategy. Elementary probability theory yields
TABC ¼ TA þ ð1� pAÞ½TB þ ð1� pBÞTC �: ð6Þ
It is clear that method C has to be used last, and hence the possible strategies to be considered are AC;BC;ABC and BAC. We
define TA=pA to be the ‘‘effective cost” of method A. This is the expected cost per success of the method. And we define the
‘‘relative effective cost” of method A by
RA �
TA

pATC
: ð7Þ
This is the expected cost per success relative to the sure method, C.
Considering the strategy AC, we have
TAC ¼ TA þ ð1� pAÞTC ; ð8Þ
which can be manipulated to yield
TAC=TC ¼ 1� pAð1� RAÞ: ð9Þ
We conclude, therefore, that AC is less costly than C (i.e., TAC < TC) if and only if RA is less than unity.
The relative merits of strategies ABC and AC are revealed by the relation
ðTABC � TACÞ=TC ¼ ð1� pAÞpBðRB � 1Þ: ð10Þ
Thus, it is beneficial to add B to AC provided that RB is also less than unity.
Comparing ABC with BAC we obtain
ðTABC � TBACÞ=TC ¼ pApBðRA � RBÞ; ð11Þ
showing that it is beneficial to invoke first whichever of A and B has the smaller effective cost.
From these examples and by induction we draw the following general conclusion. Given a set of independent methods,

the least expected cost is achieved by using all methods that have a relative effective cost, R, less than unity, and to invoke
them in order of increasing R.

(In this analysis it is assumed that methods A and B are independent, in the sense that the probability of success of B is
independent of that of A. If this is not the case, then in Eq. (6) the unconditional probability pB needs to be replaced by
the conditional probability pBjA of the success of B, given that A failed; and the result given in Eq. (11) is modified. Note that,
if method B is simply a repetition of method A, then pBjA is zero.)

3.4. Search methods

Four search methods are used in succession, with a different data structure used for each. (How these data structures are
built is described in Section 5.) The first method uses a binary tree (BT) and is essentially the same as in the original imple-
mentation of ISAT. The nodes of the BT consist of cutting planes (in the nx-dimensional space). Given a query, xq, the tree is
traversed, until a leaf is reached: this is called the ‘‘primary leaf” for the given query. The EOA of the primary leaf is then
tested to determine whether it covers the query point. If it does, then the entire search terminates successfully. If it does
not, then the BT search is unsuccessful.

After an unsuccessful BT search, the projection of the query point onto the affine space is evaluated for use in the sub-
sequent three search methods.

Two separate linked lists are maintained on the leaves. In the MRU list, the leaves are in the order in which they have
most recently been used; and in the MFU list, the leaves are in the order in which they have most frequently been used. Here,
‘‘used” means used to retrieve from the table. Thus, the head of the MRU list is the leaf used on the last retrieve; and the head
of the MFU list is the leaf used most often in previous retrieves.

A specified number, nMRU, of leaves at the head of the MRU list are tested in succession to determine whether their EOA
covers the query point (using the two-stage test based on the affine space). Then, similarly, a specified number, nMFU, of the

Fig. 1. Sketch of a very simple ellipsoidal binary tree (EBT) consisting of three leaves (2, 4 and 5) and two nodes (1 and 3). The point x is covered by the
ellipsoid of leaf 4, which in turn is covered by the ellipsoids of its antecedent nodes (3 and 1).

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 365
leaves in the MFU list are tested (skipping any that were previously tested in the MRU scan). The search terminates success-
fully if and when an EOA covering the query point is found.

The likelihood of success of the MRU and MFU searches inevitably depends on the nature of the application. The MRU
search is effective if, for example, there is substantial probability of successive queries being identical, or differing by a small
amount such that the two query points are covered by the same EOA. The MFU search is effective if the use distribution of the
leaves is highly non-uniform. In a representative test case (reported in [32,33]) with 2000 leaves, the single most frequently
used leaf accounts for 10% of all retrieves, and the 50 most frequently used leaves account for 60% of the retrieves. In such
circumstances the MFU method is certainly advantageous. While the optimal values of nMRU and nMFU are dependent on the
application, the specifications nMRU ¼ 5 and nMFU ¼ 30 are found to yield good performance over the range of test cases
investigated.

The data structure used in the final, complete search is an ‘‘ellipsoidal binary tree” (EBT) (the leaves of which correspond
to the leaves of the BT). There is an ellipsoid associated with each node and each leaf of the EBT. For a leaf, this is the pro-
jected ellipsoid of accuracy (PEOA). For a node, as illustrated in Fig. 1, it is an ellipsoid which covers the ellipsoids of both of
its children. If the projected query point is not covered by the ellipsoid of a node, it follows that the query point is not cov-
ered by any EOA in the sub-tree defined by the node: such a sub-tree is ‘‘infeasible” and can be eliminated from the search.

As depicted in Fig. 2, each node has a right child, a left child (with an ellipsoid associated with each), and a cutting plane.
The normal distance from the cutting plane is denoted by s, with s being positive and negative, respectively, at the centers of
the right and left ellipsoids. The maximum and minimum values of s for points in the right ellipsoid are denoted by sr;max and
sr;min; and for the left ellipsoid sl;max and sl;min are similarly defined. If the two ellipsoids do not intersect (as in Fig. 2a), then
the cutting plane is taken to be a separating hyperplane, so that sr;min is positive and sl;max is negative. Conversely, if the two
ellipsoids intersect (as in Fig. 2b), then there is overlap between the feasible ranges [sl;min; sl;max] and [sr;min; sr;max].

The EBT search starts at the primary leaf and proceeds by the following actions. At a leaf, test for the EOA covering the
query point (using the two-stage PEOA/EOA test). If the EOA covers the query point, the search terminates successfully.
Otherwise, move up the tree to the leaf’s parent node. At a node, if both sub-trees incident on the node have already been
tested, move up to the node’s parent node, unless the node is the root, in which case the search terminates unsuccessfully.
Otherwise, if the node’s ellipsoid does not cover the query point move to the node’s parent node; otherwise move to the right
child (if s > 0 and the right sub-tree has not already been tested), or to the left child (if s 6 0 and the left sub-tree has not
already been tested, where s is the normal distance of the query point from the cutting plane).

Note that the testing at the nodes is performed in the affine space and hence requires at most of order n2
a operations. Fur-

ther a screening test for s being in the range [sr;min; sr;max] is performed in of order na operations.
As described above, the EBT search is complete: it is guaranteed to find an EOA covering the query point if one exists. For

very large tables, such a complete search can be expensive, and its cost can be greater than directly evaluating the function
fðxqÞ. It is found to be beneficial overall to limit the extent of the EBT search so that on any query the CPU time used is less
than a specified fraction, bR of the average CPU time required to evaluate fðxqÞ: the default value is bR ¼ 0:5.

4. EOA growing

If the retrieve attempt fails, then some leaves are selected as candidates for having their EOAs grown. We describe here
the ‘‘grow search” performed to identify candidate leaves, and the subsequent EOA growth (and other modifications to the
leaf). The treatment used is heuristic, and is the result of a good deal of experimentation with alternative implementations
and variants. The fundamental reason for the need for heuristics is that the region of accuracy (ROA) is not in all circum-
stances well approximated by an ellipsoid. This point is now elaborated upon.

4.1. Region of accuracy

The fundamental issue involved is adequately illustrated by the simple case of a scalar function (nf ¼ 1) in two dimen-
sions (nx ¼ 2). To leading order, the error in the linear approximation (Eq. (3)) to fðxqÞ based on the leaf at xðnÞ is:
f l;nðxqÞ � f ðxqÞ ¼ 1
2

Hijrirj; ð12Þ

a

b

Fig. 2. Sketch of the cutting plane and the ellipsoids of the left and right children of a node of an EBT. The coordinate s measures distance normal to the
cutting plane, and R and L show the ranges of s for points in the right and left ellipsoids, respectively. (a) Case in which the ellipsoids do not intersect and (b)
case in which the ellipsoids intersect, and hence R and L overlap.

366 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
where r is the separation vector (r � x� xðnÞ), and H is the symmetric Hessian matrix
Hij �
o2f

oxioxj
: ð13Þ
Thus, the region of accuracy (ROA), R is (to leading order) given by
R ¼ r j 1
2
j Hijrirj j< etol

� �
: ð14Þ

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 367
The geometry of the ROA, R, is determined by the eigenvalues (k1 and k2) and the eigenvectors of H. (Because H is symmetric,
the eigenvalues are real, and the eigenvectors are orthogonal.) With er being the components of r in the eigenvector basis, the
ROA, Eq. (14), can be re-expressed as
Fig. 3.
hyperb
R ¼ er jj k1er2
1 þ k2er2

2 j< 2etol
� �

: ð15Þ
If both eigenvectors are of the same sign, then R is indeed an ellipse (with principal semi-axes
ffi
2etol= j k1;2 j

p
). But if the

eigenvalues have opposite signs, the ROA is hyperbolic (i.e., the bounding lines eðrÞ ¼ etol are hyperbolae). In particular,
we observe that along the lines er2 ¼ �er1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j k1=k2 j

p
, the error is zero.

Fig. 3 illustrates why a hyperbolic ROA causes problems for ISAT. As shown, the EOA is initially entirely within the ROA.
However, when the EOA is grown based on the point p (at which the error is zero) it then includes significant regions where
the error exceeds the tolerance. Hence a subsequent retrieve from a point such as q can result in an error e substantially
larger than etol.

(Even for an elliptical ROA, the EOA can be grown to include regions outside the ROA. However, the extent of these regions
and the problems they cause are much less than for hyperbolic ROAs.)

For the scalar, two-dimensional, hyperbolic case considered, the ROA is unbounded. In the vector case (nf > 1), the ROA is
unbounded only if the Hessian based on each component of f contains both positive and negative eigenvalues, and if there is
an alignment between the hyperplanes on which the error in each component is zero. It may be, therefore, that in applica-
tions with moderate or large values of nf , the ROAs encountered may be less pathological than the hyperbola in the scalar
case.

4.2. Ellipsoid of inaccuracy (EOI)

In addition to an EOA (and PEOA), each leaf has an ‘‘ellipsoid of inaccuracy” (EOI) and its projection (PEOI) onto the affine
space. In a quite approximate way, the EOA and EOI are considered as lower and upper bounds on the region of accuracy. A
point, x, covered by the EOA is deemed accurate (with respect to the linear approximation at x based on the leaf properties),
whereas a point not covered by the EOI is deemed inaccurate. The EOI, which is concentric with the EOA, is initialized to be
quite large (as described in Section 5.2) and is modified (as described later in this section) as further information about the
leaf’s region of accuracy is obtained.

The normal picture of the EOA and EOI is sketched in Fig. 4a: points covered by the EOA are deemed accurate, those not
covered by the EOI are deemed inaccurate, and the accuracy of other points (covered by the EOI but not by the EOA) is
deemed to be unknown. As mentioned, only to a limited extent do the EOA and EOI accurately bound the region of accuracy,
and hence their names should not be take too literally. In particular, the case sketched in Fig. 4b can arise in which the EOI
does not completely cover the EOA. This case is said to result in a ‘‘conflict” because, in a literal interpretation, the region
covered by the EOA but not by the EOI is deemed to be both accurate and inaccurate, which is clearly contradictory.

4.3. Grow search

Based on a query xq, a leaf’s EOA can be grown only if the linear approximation (at xq based on the leaf properties) is accu-
rate. The EOIs are used to determine leaves which are good candidates for growing. If an EOI covers xq, then the linear
Sketch of EOA growing for the case of a hyperbolic region of accuracy (ROA). The initial EOA, E0, is entirely within the ROA, which is bounded by the
olae on which e ¼ etol. The EOA, E, which results from growing E0 based on the accurate point p, includes inaccurate regions, such as the point q.

a b

Fig. 4. Sketch of the EOA and EOI of a leaf for (a) the normal case in which the EOI covers the EOA and (b) the case of a conflict in which part of the EOA is not
covered by the EOI.

368 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
approximation may be accurate, and the leaf is deemed to be a candidate for growing. On the other hand, if the EOI does not
cover xq, then the linear approximation is estimated to be inaccurate, and the leaf is not a candidate for growing.

In order to identify candidate leaves, a ‘‘grow search” is performed to identify some or all of the leaves whose EOI covers
xq. This task (for growing based on EOIs) is directly analogous to the retrieve search (for retrieving based on EOAs); and one
of the same techniques is used, namely an EBT search.

A second ellipsoidal binary tree (EBT) is formed, in this case with the leaves corresponding to PEOIs (the EOIs projected
onto the affine space). The searching of the EBT is performed in exactly the same way as in the EBT retrieve search. In this
case the amount of searching is limited so that, on any query, the total amount of CPU time spent on grow attempts does not
exceed a specified factor bG of the average CPU time require to evaluate fðxÞ: the default value is bG ¼ 2.

4.4. EOA growth and EOI modification

For each candidate leaf, the error e in the linear approximation to fðxqÞ is measured and compared to the error tolerance,
etol. In the accurate case (e < etol) the EOA is grown; otherwise the EOA is not changed. As in the original ISAT algorithm, the
grown EOA is uniquely defined as the ellipsoid of minimum content, with the same center, which covers both the original
EOA and the query point xq.

The procedure to modify the EOI is more involved. Fig. 5 shows the ray from the center of the leaf c through the query
point xq. We denote by s the distance along this ray (measure from c), with sq denoting the distance to xq. There is an un-
known point xa, a distance sa along the ray, at which the ray intersects the boundary of the region of accuracy (and hence
e ¼ etol there). The EOI is modified based on a point xm, a distance sm along the ray, where xm is (as now explained) a con-
servative estimate of xa.

A Taylor-series analysis inevitably shows that the error eðsÞ along the ray varies as s2 (to leading order). The error is
known at xq and hence eðsÞ can be estimated as
Fig. 5.
(unkno
eðsÞ � eðsqÞ
s
sq

� �2

; ð16Þ
and hence sa can be estimated (based on eðsaÞ ¼ etol) as
sa

sq
� etol

eðsqÞ

� �1
2

: ð17Þ
Sketch showing the distance s from the center c of the EOI along the ray through the query point xq . In this case eðsqÞ is less than etol; xa is the
wn) point at which the error equals etol; and xm is the conservative estimate of xa used to shrink the EOI.

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 369
In the accurate case (eðsqÞ < etol), sa is greater than sq. In place of Eq. (17) the more conservative estimate
Fig. 6.
Section
sm

sq
¼min

etol

eðsqÞ
;4

� �
; for eðsqÞ < etol; ð18Þ
is used. On the other hand, in the inaccurate case, sa is less than sq, and the more conservative estimate used is
sm

sq
¼max

etol

eðsqÞ

	
1
4

;
1
4

 !
; for eðsqÞP etol: ð19Þ
These specifications of sm define the point xm which is then used to modify the EOI. If xm is not covered by the EOI, then no
modification is made. Otherwise, the EOI is ‘‘shrunk” using the ‘‘conservative algorithm” described in [34].

After all candidate leaves have been considered for modification, the EBT defined on the PEOAs is updated (if one or more
EOA has been grown); and similarly the EBT defined on the PEOIs is updated (if one or more EOI has been shrunk).

4.5. Incurred error and ECC

In the testing of ISAT, the error e incurred on a retrieve can be measured (by directly evaluating the function fðxqÞ based
on the query xq). We then define the cumulative distribution function (CDF) FðyÞ to be the fraction of retrieves on which the
incurred error is less than y; and then its complement FðyÞ � 1� FðyÞ is the fraction of retrieves on which e is greater than or
equal to y.

Fig. 6 shows a plot of the complement of the CDF FðyÞ for a representative test case. As may be seen, the distribution does
not have a sharp cut-off at y ¼ etol; but instead, larger errors occur with rapidly decreasing frequency. We take the 90% error
e0�9 (such that Fðe0�9Þ ¼ 0:9) as a representative measure of the incurred error. The larger errors observed in Fig. 6 occur be-
cause some EOAs are inadvertently grown to include inaccurate regions. During the development of the present ISAT algo-
rithm, very many variants of the algorithm were implemented and tested, and the influence of various parameters were
explored. It is found that the shape of the error distribution, i.e., FðyÞ plotted against y=e0�9, is remarkably insensitive to
the details of the implementation of ISAT (see Fig. 19 in Section 6.8). However, these details can have a significant effect
on the value of e0�9=etol, on the table size, and on the CPU time required. It is essential to appreciate that the relative merits
of different implementations must be examined for a fixed value of the incurred error e0�9, not for a fixed value of the error
tolerance.

The technique of error checking and correction (ECC), suggested by B. Panda (private communication) and now described,
is found to be particularly effective in reducing the incurred error e0�9=etol at a small computational cost. The idea of ECC is to
check the incurred error occasionally, and if it exceeds the error tolerance, to shrink the EOA responsible for the inaccurate
retrieve. Measuring the incurred error is an expensive process, since it requires the direct evaluation of the function fðxÞ. In
ISAT, retrieves are selected at random (by a Poisson process) for ECC treatment, with a probability such that, on average, the
frequency of ECC events is controlled as described below. If the retrieve error is found to exceed the error tolerance etol, then
the EOA is shrunk to become the maximum content concentric ellipsoid, covered by the original EOA, which does not cover
the query point.

Two variants of ECC (denoted ECC-Q and ECC-G) are examined. In ECC-Q, the ECC frequency is controlled so that the CPU
time spent on ECC is a specified fraction fQ of the total (with fQ ¼ 0:1). In the ECC-G the ECC frequency is controlled so that
the number of ECC events is a specified fraction fG of the number of grow events (with fG ¼ 0:1).
10−4 10−2 100 102
10 −4

10 −3

10 −2

10 −1

10 0

y/ε
tol

1−
F(

y)
 =

 P
ro

b(
 ε

 >
=

 y
)

ε
0.9

/ε
tol

Complement of the CDF of the local error FðyÞ ¼ Probfe P yg, showing the 90% error, e0:9. From the PaSR/GRI test with etol ¼ 2�10 for ISAT5-Q. (See
6.8 for details.)

370 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
5. Adding

On a given query, if the retrieve and grow attempts fail, and if the table is not full, then a new entry is added to the table.
(The treatment used when the table is full is discussed at the end of this section.) The primary operations involved in an
‘‘add” are the initialization of the new leaf (EOA, EOI, etc.) and its insertion into the various data structures. These operations
are now outlined.

5.1. Initialization of the EOA

Let n be the index of the leaf to be added. Then its location xðnÞ is that of the query, xq, and this is also the center of the EOA
and EOI. The function value fðnÞ is known from the grow attempt, and the gradient matrix AðnÞ is evaluated.

The initial EOA is specified based on the region of accuracy of the constant approximation fðxÞ � fðxðnÞÞ. Let r � x� xðnÞ de-
note distance from the tabulation point. Then, to leading order, the error ecðrÞ in the constant approximation is
ec ¼ kAðnÞrk; ð20Þ
or equivalently
e2
c ¼ rT VRTRVT r; ð21Þ
where URVT ¼ AðnÞ is the SVD of AðnÞ.
The region of accuracy of the constant approximation is given by
Rc ¼ fr j ecðrÞ 6 etolg: ð22Þ
For the case in which there are nx strictly positive singular values, ri, Eq. (21) shows that, to leading order, Rc is an ellipsoid:
the principal semi-axes have lengths 1=ri, and directions given by the columns of V. If a singular value is zero (which is inev-
itably the case if nf is less than nx), then according to Eq. (21) the region of accuracy is unbounded in the corresponding
direction.

Based on these observations, the EOA is initialized as an ellipsoid with principal semi-axes in the directions of the col-
umns of V, and of length
ki �min 1=ri;aEOAe
1
2
tol

� �
; ð23Þ
with aEOA ¼ 0:1 Note that the neglected quadratic term in the expansion for ec (Eq. (20)) adds a contribution of order j rj2, and
the specification Eq. (23) ensures j rj2 6 a2etol for all points in the initial EOA.

This specification of the initial EOA is very conservative in that it aims to limit the error in the constant approximation,
whereas the more accurate linear approximation is used in retrieving. Tests of ISAT with growing suppressed confirm that
the retrieving error from EOAs as initialized is extremely small – certainly less than etol.

5.2. Initialization of the EOI

An upper bound on the length of the semi-axes of the EOI is specified as rmax ¼ aEOIe
1
2
tol, with aEOI ¼ 10. If the components

of o2fi=oxjoxk are of order unity, then (to leading order) the error in the linear approximation is of order j rj2, and hence is of
order a2

EOIetol on the boundary of the ball of radius rmax centered at xðnÞ.
Since the retrieve attempt failed, it is known that the linear approximations to fðxðnÞÞ based on all other (tested) leaves

mðm–nÞ are inaccurate. It is reasonable to suppose (especially for small etol) that similarly the linear approximations to
fðxðmÞÞ based on the leaf n (for all m–n) are inaccurate, and hence these other tabulated points are outside the region of accu-
racy of the nth leaf. Accordingly, the EOI is initialized by an approximation to the ellipsoid of maximum content, centered at
xðnÞ, covered by the ball of radius rmax, and which does not cover any other tabulation point.

This initialization of the EOI is accomplished as follows. A search on the binary tree of leaves is performed to identify (up
to 1,000) tabulations points xðmÞ that are covered by the ball of radius rmax centered at xðmÞ. This search is based on the obser-
vation that, at a node of the binary tree, if the ball is entirely on one side of the cutting plane, then the sub-tree lying on the
opposite side of the cutting plane can be eliminated from the search. If more than 100 points are found, then only the 100
points closest to xðnÞ are retained. The algorithm described in [34] is then used to construct the EOI as an ellipsoid centered at
xðnÞ, which covers none of the retained points, and with principal semi-axes no larger than rmax. (This algorithm involves a
parameter h, which is set to h ¼ 0:9.)

Once the EOA and EOI have been initialized, all other leaf information to be stored is computed (e.g. the PEOA and PEOI).

5.3. Insertion in the data structures

Once all of the information pertaining to the added leaf has been computed, the leaf is inserted into each of the data
structures.

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 371
The new leaf is inserted at the head of the MRU linked list and at the tail of the MFU linked list. These lists are updated in
an obvious way whenever a leaf is used in a successful retrieve.

The new leaf is inserted into the binary tree (BT) by replacing the primary leaf by a node, whose two children are the new
leaf and the primary leaf. The cutting plane at the node is set to be the perpendicular bisector of the line between the two
leaves, in the linearly transformed space in which the EOA of the primary leaf is a ball. The BT data structure is unaffected by
retrieving and growing: it changes only as a result of adding.

There are two ellipsoidal binary trees (EBTs), one defined on the PEOAs, the other on the PEOIs, and they both function in
the same way. To insert a new leaf, the EBT is traversed (based on xðnÞ) to identify the new leaf’s sibling. This leaf is then
replaced by a node, whose two children are the new leaf and its sibling. In general, a node of an EBT includes a cutting plane
and the related geometrical information discussed in Section 3.4 and shown in Fig. 2. The node also includes a ‘‘bounding
ellipsoid,” which covers the ellipsoids associated with both of its children. The bounding ellipsoid is formed using the
‘‘covariance algorithm” described in [34]. Whenever a PEOA or PEOI is added or modified (as a result of growing), all of
its antecedent nodes are updated (i.e., the cutting planes and bounding ellipsoids of these nodes are re-formed).

5.4. Treatment of a full table

For challenging problems (especially for large nx) the number of ISAT table entries can continually increase until the avail-
able memory is exhausted. Consequently, it is necessary to monitor and limit the table size, and to specify the action to be
taken when a grow attempt fails and the table is full. The three actions considered are:

(a) Return the value of fðxqÞ (that is evaluated during the grow attempt) and do not alter the table.
(b) Delete the least recently used leaf (at the tail of MRU) and replace it by the new leaf.
(c) Delete the least frequently used leaf (at the tail of MFU) and replace it by the new leaf.

As with many aspects of ISAT, the best strategy depends on the nature of the problem. In particular, in this instance, it
depends on whether or not the problem is statistically stationary, i.e., whether the distribution of queries xq is fixed or
evolving. For statistically stationary problems (a) appears optimal. In tests performed, it is generally found that the
new leaf added in (b) or (c) provides no benefit compared to that deleted, but there is a substantial penalty in the cost
of the subsequent growing of the added leaf. (It should be appreciated that the new, added leaf is likely to have a rela-
tively small EOA (resulting from its initialization), whereas the deleted leaf is likely to be larger due to grows that it has
experienced.)

For some non-stationary problems it is likely that (b) is optimal. In particular if the query distribution moves away from
part of the tabulated region, and never returns, then the corresponding table entries can be deleted without penalty.
6. Performance of ISAT

Comprehensive testing of the ISAT algorithm has been performed for two test cases of a partially-stirred reactor (PaSR).
The PaSR test cases are described in the first sub-section. Then test results are presented on the performance of ISAT, includ-
ing the incurred error, CPU time per query, and number of table entries. Different variants of the ISAT implementation, and
different values of various parameters are investigated, with the objectives of assessing the efficacy of different components
of the algorithm and of determining near optimal values of the parameters. In the final sub-section, the performance of the
new ISAT algorithm is compared to that of an earlier implementation.

6.1. The PaSR test case

The test case considered is a partially-stirred reactor (PaSR) involving the combustion of methane in air. This results in a
time-dependent particle simulation which becomes statistically stationary. The function fðxÞ, for which ISAT is employed, is
the mapping between the thermochemical composition of a particle at the beginning of a time step ðxÞ, and its value at the
end of the time step ðfÞ.

The PaSR has been used previously in many studies of combustion models and numerical algorithms [1,35–40]. The spe-
cific case considered is the non-premixed, adiabatic combustion of methane in air at atmospheric pressure. The pair-wise
mixing model [1] is used, and this is specifically designed to provide a broad distribution of compositions ðxÞ, and hence
a good test case for ISAT. The computations performed in the PaSR test are similar to those for a single cell in a PDF or
LES/FDF simulation of turbulent combustion, and hence the performance of ISAT in the PaSR test has a direct bearing on
its performance in these applications.

The PaSR evolves in time, t, in discrete time steps of size Dt. At time t, the reactor consists of an even number N of par-
ticles, the nth of which has the thermochemical composition /ðnÞðtÞ. The n/ components of this composition vector / are the
specific moles of the ns chemical species and the enthalpy (i.e., n/ ¼ ns þ 1). At the beginning of each time step, events occur
corresponding to outflow, inflow and pairing which cause the ensemble of particles to change discontinuously. Between these

Table 1
Specified parameters in the PaSR tests

Number of particles N 100

Time step Dt 0.1 ms
No. of sub-steps Nsub 3
Sub-step Dtsub 0.033 ms
Residence time sres 10 ms
Mixing time scale smix 1 ms
Pairing time scale spair 1 ms

372 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
discrete times, the composition evolves by mixing and reaction fractional steps. The particles are arranged in pairs: particles
1 and 2, 3 and 4, � � � ;N � 1 and N are partners. The mixing fractional step consists of pairs (p and q, say) evolving by
d/p

dt
¼ �ð/p � /qÞ=smix; ð24Þ

d/q

dt
¼ �ð/q � /pÞ=smix; ð25Þ
where smix is a specified mixing time scale. In the reaction fractional step, each particle evolves by the reaction equation
d/ðnÞ

dt
¼ Sð/ðnÞÞ; ð26Þ
where S is the rate of change of composition given by the chemical kinetics.
At the discrete times kDt, with sres being the specified residence time, outflow and inflow consist of selecting 1

2 NDt=sres

pairs at random and replacing their compositions with inflow compositions, which are drawn from a specified distribution.
With spair being the specified pairing time scale, 1

2 NDt=spair pairs of particles (other than the inflowing particles) are randomly
selected for pairing. Then these particles and the inflowing particles are randomly shuffled so that (most likely) they change
partners. Between the discrete times, i.e., over a time step Dt, a specified number Nsub of sub-steps of duration Dtsub ¼ Dt=Nsub

are taken for reaction and mixing. During each sub-step of duration Dtsub, the composition evolves by a mixing step (of size
Dtsub=2), followed by a reaction step (of size Dtsub), and then by another mixing step (of size Dtsub=2).

The values of the parameters used in the test calculation are given in Table 1. There are three inflowing streams: air (79%
N2, 21% O2 by volume) at 300 K; methane at 300 K; and a pilot stream consisting of the adiabatic equilibrium products of a
stoichiometric fuel/air mixture at a temperature of 2600 K (corresponding to an unburnt temperature of 1113 K). The mass
flow rates of these streams are in the ratio 0.85:0.1:0.05. Initially (t ¼ 0), all particle compositions are set to be the pilot-
stream composition. The pressure is atmospheric throughout.

Two different chemical mechanisms are used to describe the combustion of methane, specifically to determine the net
creation rates S of the species (in Eq. (26)). The first is the skeletal mechanism used in [41], which involves ns ¼ 16 species;
the second is the more complex GRI 3.0 mechanism [42] which involves ns ¼ 53 species.

ISAT is used to perform each reaction sub-step for each particle. The input x is the scaled composition of the particle at the
beginning of the sub-step (xa ¼ /ðnÞa ðt0Þ=/a;ref); and the output is the composition at the end of the sub-step
fa ¼ /ðnÞa ðt0 þ DtsubÞ=/a;ref . Here /a;ref is a reference value, chosen to represent the variation of /a, so that the variations in
x and f are of order unity.

The direct evaluation of fðxÞ requires the integration of the stiff set of ordinary differential equations, Eq. (26). This is
accomplished using the ODE solver DDASAC [43].

To perform the PaSR simulation for one residence time requires 30,000 ISAT queries (i.e., 300 sub-steps for 100 particles).
The PaSR becomes statistically stationary after about three residence times, about 105 queries. Most of the tests reported
below are for about 4000 residence times (1:2� 108 queries), and hence are dominantly in the statistically stationary state.

6.2. Effect of the limit on table size

The difficulty of a tabulation problem, and hence the performance of ISAT, depends on many factors (e.g. nx;nf , etol).
Among these factors are the total number of queries Q and the maximum allowed table size A. (Here we measure A in table
entries (i.e., leaves), but it can also be measured in megabytes.) In this sub-section we illustrate the effect of A on the per-
formance of ISAT.

For a problem with Q queries and a limit of A on the allowed number of ISAT table entries, let pRðQ ;AÞ; pGðQ ;AÞ; pAðQ ;AÞ
and pDðQ ;AÞ denote the fraction of queries resulting in retrieves, grows, adds and direct evaluations (which are required
when the table is full if the retrieve and grow attempts fail). For the PaSR test case, since it is random, pR; pG; pA and pD

can also be viewed as probabilities. These fractions (or probabilities) sum to unity, i.e., we have
pRðQ ;AÞ þ pGðQ ;AÞ þ pAðQ ;AÞ þ pDðQ ;AÞ ¼ 1: ð27Þ

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 373
In the hypothetical case of infinite storage, adding is always possible and hence no direct evaluations are required, i.e.,
pDðQ ;1Þ ¼ 0.

In a large-scale calculation resulting a large number of queries, the grow and add events are likely only during the table
building period, which in general accounts for only a small fraction of the whole simulation; and in the retrieving phase,
essentially all queries are resolved either by retrieves or by direct evaluations. Hence for a very long run, we have
pR þ pD � 1, and the average CPU time for a query, tQ , can be well approximated as
Fig. 7.
numbe
tQ � tRpRðQ ;AÞ þ tDpDðQ ;AÞ
� tR þ pDðQ ;AÞðtD � tRÞ; ð28Þ
where tR is the average CPU time to perform a retrieve, tD is the average CPU time to perform a direct function evaluation,
and the second step in Eq. (28) follows from the observation pR � 1� pD. Typically, the retrieve time tR is several orders of
magnitude smaller than the direct evaluation time tD. According to Eq. (28), the computational performance of ISAT depends
highly on the fraction of direct evaluations pDðQ ;AÞ, which is a function of the allowed storage. The ideal computational per-
formance that ISAT can achieve is tQ ¼ tR, where essentially all the queries are resolved by retrieves and the contribution of
direction evaluation in Eq. (28) is negligible.

For a particular PaSR test, Fig. 7 shows the average CPU time per query, and the fraction of direct evaluations against the
number of table entries allowed. The key observation is that the fraction of the computationally expensive direct evaluations
decreases monotonically with the number of allowed table entries A, until it reaches zero for the largest value of A used
(which is the only case in which the table is not full). Consequently, in the region where A is relatively small, the average
query time decreases substantially as A increases. In the region where A is large (here, A P 30;000), the average query time
reaches a plateau and the allowed storage does not have a significant effect on ISAT performance. This is because, in this
region, the allowed storage is sufficiently large: almost all of the queries are resolved by retrieves and the contribution of
direction evaluations to the query time is negligible.

With a given ISAT implementation, and for a given test case (with a specified error tolerance and a specified number of
queries), we can define the critical number of ISAT table entries, A	, implicitly by
pDðQ ;A
	Þ ¼ tR

tD � tR
: ð29Þ
Given that pDðQ ;AÞ is a monotonically decreasing function of A, there is a unique value of A	 satisfying this equation. With
this definition, the average query time can be re-expressed as
tQ

tR
¼ 1þ pDðQ ;AÞ

pDðQ ;A
	Þ : ð30Þ
Evidently the storage ratio s � A=A	 determines the effectiveness of ISAT. For s P 1, ISAT is very effective and tQ=tR 6 2, i.e.,
within a factor of 2 of the ideal performance. For s < 1, the time spent on direct evaluations is significant. For the calculation
shown in Fig. 7, the value of tR is about 40 ls, the value of tD is about 5000 ls, and the critical number of table entries, A	, is
about 28,000. As may be seen from Fig. 7, if the number of allowed table entries is less than the critical value, the calculation
incurs a significant fraction of computationally expensive direct evaluations, which causes a dramatic deterioration in the
computational performance. Conversely, for A > A	; tQ depends weakly on A.

It is worth mentioning that for calculations of a particular reactive flow (with a specified incurred error and a speci-
fied number of queries), the critical number of ISAT table entries, A	, depends on the implementation of ISAT. An ISAT
103 104 105 1060

1000

2000

3000

4000

A

t Q
 (

μ
s)

a b

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

A

p D pD(Q, A*)

A*

For the PaSR test with the 16-species skeletal mechanism (a) the average CPU time ls per query; (b) the fraction of direct evaluations against the
r of table entries allowed in ISAT. The error tolerance is etol ¼ 1� 10�4 and the calculation results in 1:5� 108 queries.

374 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
implementation with a smaller value of A	, i.e., reduced storage requirement, is obviously advantageous. It can significantly
alleviate the storage constraint for ISAT when applied to challenging problems where large storage for ISAT is desirable. For a
given table storage, an implementation with a smaller value of A	 results in a smaller fraction of direct evaluations and thus
achieves higher computational efficiency.

6.3. Effect of the dimensionality of the affine space

As described in Section 3.2, an na-dimensional affine space is employed in searching EOAs (for retrieving) and EOIs (for
growing). A series of PaSR tests are performed to examine the effect of the value of na on different aspects of ISAT’s perfor-
mance, and the results are shown in Fig. 8. These test are performed using both the skeletal and GRI mechanisms; using three
values of the error tolerance etol; and using different fixed values of na as well as the value determined by a principal com-
3 4 5 6
x 10−4

20

40

60

80

100

120

 2 4

 6

 8

10

12

14

16

 2 4
 6

 8

10
12

14

16

 2 4

 6

 8

10

12

14

16

auto
auto

auto

ε
0.9

t Q
 (

 μ
 s

ec
.)

a
Skeletal

5 6 7 8
x 10−4

100

200

300

400

500

600

700

 2
 610

14
18

2226

30
34

38

42

46

 2
 610

1418
22
2630

34
38

42

46

 2 6
10

14
18

22
26

30

34

38

42

46

auto auto
auto

ε
0.9

t Q
 (

 μ
 s

ec
.)

GRI3.0

3 4 5 6
x 10−4

10

20

30

40

50

60

70

 2
 4

 6

 8

10

1214

16

 2
 4

 6
 8

10
12

14

16

 2
 4

 6

 8

10

12

14

16

auto
auto auto

ε
0.9

t R
 (

 μ
 s

ec
.)

b
Skeletal

5 6 7 8
x 10−4

0

50

100

150

200

250

300

350

400

 2
 6

10

14
18

2226

30

34

38

42

46

 2
 610

1418
22
26

30

34
38

42

46

 2 6
10 14

18 22
26

30

34

38

42

46

auto auto auto

ε
0.9

t R
 (

 μ
 s

ec
.)

GRI3.0

3 4 5 6
x 10−4

0

1

2

3

4

5

6

7

8 x 104

 2 4
 6

 810
12

14

16

 2 4 6
 8

10
12

14

16

 2 4 6
 810 12

14

16

auto

auto
auto

ε
0.9

A
dd

s

c
Skeletal

5 6 7 8
x 10−4

0.5

1

1.5

2

2.5 x 104

 2 6
1014 18

22
26

30

3438

42
46

 2
 6

10
14

18

22
26

30
34

38

42
46

 2 6
10

14

18
222630

3438
42

46

auto

auto

auto

ε
0.9

A
dd

s

GRI3.0

Fig. 8. For the PaSR test, the effect of the dimensionality of the affine space na on ISAT performance: (a) CPU time ls per query; (b) CPU time ls per retrieve,
and (c) number of adds (or table entries) against the 90% error. Left column: skeletal mechanism with etol ¼ 4� 10�4 (red), etol ¼ 5� 10�4 (blue) and
etol ¼ 6� 10�4 (green); right column: GRI3.0 mechanism with etol ¼ 5� 10�4 (red), etol ¼ 6� 10�4 (blue) and etol ¼ 7� 10�4 (green). Symbol 	:
implementation with fixed values of na (indicated by the numbers on the plots);
: implementation with na automatically determined. The table is not
full for all the calculations and each calculation results in 1:2� 108 queries. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 375
ponent analysis (as described in Section 3.2). Each test results 1:2� 108 queries, and in no case in the ISAT table full. The
quantities shown in Fig. 8 are: the average time for a query, tQ , and the average time spent on retrieving, tR; the number
of entries added to the table, A; and the incurred error, e0�9.

The first point to appreciate from Fig. 8 is that the incurred error e0�9 depends significantly on the value of na as well as on
etol. For example, in the GRI test (right column of Fig. 8), the incurred error for etol ¼ 5� 10�4 and na ¼ 6, is greater than for
the larger error tolerance etol ¼ 6� 10�4 and na ¼ 46. The emphasizes the need to compare performance at the same value of
e0:9, not etol.

It is clear from Fig. 8 that relatively small fixed values of na can lead to a three-fold decrease in tQ and tR (at fixed e0:9). For
the skeletal mechanism (nx ¼ nf ¼ 17), the values na ¼ 2 and na ¼ 4 yield comparably good performance, whereas for the GRI
mechanism (nx ¼ nf ¼ 54) good performance is observed for na 6 10.
2 2.5 3 3.5 4 4.5 5 5.5
x 10−4

101

102

103

def.
no BT

no MFUno MRU

no EBT

def.

no BT

no MFU
no MRU

no EBT

def.

no BT

no MFU

no MRU

no EBT

ε0.9

t Q
 (

μ
se

c.
)

a
Skeletal

4 6 8 10 12 14
x 10−4

102

103

104

def. no BT no MFUno MRU

no EBT

def.

no BT
no MFU

no MRU

no EBT

def. no BT
no MFU

no MRU

no EBT

ε0.9

t Q
 (

μ
se

c.
)

GRI3.0

2 2.5 3 3.5 4 4.5 5 5.5
x 10−4

10

12

14

16

18

20

22

24

def.

no BT

no MFU

no MRU

no EBT

def.

no BT

no MFU
no MRU

no EBT

def.

no BT

no MFU

no MRU

no EBT

ε0.9

ε0.9
ε0.9

t R
 (

μ
se

c.
)

Skeletal
b

4 6 8 10 12 14
x 10−4

28

30

32

34

36

38

40

42

44

def.

no BT

no MFU

no MRU

no EBT

def.

no BT

no MFU
no MRUno EBT

def.

no BT

no MFU
no MRU

no EBT

ε0.9

t R
 (

μ
se

c.
)

GRI3.0

2 2.5 3 3.5 4 4.5 5 5.5
x 10−4

0

2

4

6

8

10

12

14 x 104

def.
no BT

no MFU
no MRU

no EBT

def.

no BT
no MFU

no MRU
no EBT

def.
no BT

no MFU

no MRU

no EBT

A
dd

s

Skeletal
c

4 6 8 10 12 14
x 10−4

4000

4500

5000

5500

6000

6500

7000

7500

8000

def.

no BT
no MFU

no MRU

no EBT

def.

no BT no MFU
no MRU

no EBT

def.
no BT

no MFUno MRU

no EBT

A
dd

s

c)

GRI3.0

Fig. 9. For the PaSR test, the effect of different retrieve operations on ISAT performance: (a) CPU time ls per query, (b) CPU time ls per retrieve, and (c)
number of adds against the 90% error. Left column: skeletal mechanism with etol ¼ 4� 10�4 (red), etol ¼ 5� 10�4 (blue), etol ¼ 6� 10�4 (green), and each
calculation results in 1:2� 108 queries; right column: GRI3.0 mechanism with etol ¼ 5� 10�4 (red), etol ¼ 6� 10�4 (blue), etol ¼ 7� 10�4 (green), and each
calculation results in 1:2� 107 queries. The number of table entries allowed is sufficiently large and the table is not full for all the calculations. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

376 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
It may also be observed that the relatively small values of na lead to fewer table entries (for the same incurred error, e0:9).
This is because the more efficient searching has a higher probability of success (given that the amount of searching allowed is
limited by the CPU time expended). By using a small value of na, the table size can be reduced typically by a factor of two.
This can have a yet more favorable impact on performance for cases in which the table becomes full.

In nearly all of these test cases, the automatic determination of the affine space using principal component analysis yields
a value of na less than 5. As may be seen from Fig. 8, this automatically-determined value is close to optimal with respect to
all quantities examined (tQ ; tR and A).
2 3 4

x 10−4

30

35

40

45

50

55

60

65

70

75 0.10.3

0.5
0.7

0.9

0.1
0.3

0.5

0.7

0.9

0.10.3
0.5

0.7 0.9

ε0.9

t Q
 (μ

 se
c.

)

a
Skeletal

5.5 6 6.5 7 7.5 8 8.5
x 10−4

100

150

200

250

300

350

0.001

0.01
0.1

0.3

0.5
0.70.9

0.001

0.01

0.1
0.3 0.5

0.7
0.9

0.001

0.01 0.1
0.30.5
0.7
0.9

ε0.9

t Q
 (μ

 se
c.

)

GRI3.0

2 3 4

x 10−4

16

18

20

22

24

26

28

30

32

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1
0.3 0.5

0.7

0.9

ε0.9

t R
 (

μ
se

c.
)

b
Skeletal

5.5 6 6.5 7 7.5 8 8.5
x 10−4

30

32

34

36

38

40

0.001

0.01
0.1

0.3

0.5 0.7

0.9

0.001

0.01

0.1
0.30.50.7
0.9

0.001

0.01

0.1

0.3
0.5

0.7
0.9

ε0.9

x 10−4ε0.9 ε0.9

t R
 (

μ
se

c.
)

2 3 4
x 10−4

2

3

4

5

6

7

8 x 104

0.1
0.3

0.5
0.7

0.9

0.1

0.3
0.5 0.7

0.9

0.10.3
0.50.7 0.9

A
dd

s

c
Skeletal

5.5 6 6.5 7 7.5 8 8.5
x 10−4

0.7

0.8

0.9

1

1.1

1.2

1.3 x 104

0.001 0.01 0.1

0.3

0.5
0.70.9

0.001
0.01

0.1
0.3 0.5

0.7

0.9

0.001

0.01
0.1

0.3
0.5

0.7
0.9

A
dd

s

GRI3.0

Fig. 10. For the PaSR test, the effect of parameter bR on ISAT performance: (a) CPU time ls per query and (b) CPU time ls per retrieve, and (c) number of
adds against the 90% error. Left column: skeletal mechanism with etol ¼ 2� 10�4 (red), etol ¼ 3� 10�4 (blue), etol ¼ 4� 10�4 (green); right column: GRI3.0
mechanism with etol ¼ 5� 10�4 (red), etol ¼ 6� 10�4 (blue), etol ¼ 7� 10�4 (green). The numbers next to the symbols show the value of bR . The number of
table entries allowed is sufficiently large and the table is not full for all the calculations. Each calculation results in 1:2� 108 queries. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

6.4. Effect of operations and parameters controlling retrieve attempts

As described in Section 3.4, a succession of methods – BT, MRU, MFU, EBT – are used to attempt to retrieve. In Fig. 9 we
investigate the effectiveness of these methods by suppressing them one at a time. Thus, for example, ‘‘no BT” indicates the
case in which BT is suppressed, whereas ‘‘def” denotes the default case in which all methods are used.

The most striking observation from Fig. 9 is the beneficial effect of EBT: without it (indicated by ‘‘no EBT”), query times
increase by an order of magnitude (albeit with a slightly reduced incurred error). The effects of other methods are much
smaller and somewhat varied. Nevertheless, the default (of using all methods) is optimal (or near optimal) with respect
to query time and table size in all cases.
3 4 5 6
x 10−4

20

30

40

50

60

70

80

0.5

1.0

1.5 2.0
2.5

3.0
3.5
4.0

0.5

1.0

1.52.0

2.5 3.0
3.5

4.0

378 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
The amount of EBT searching on each query is limited so that the CPU time consumed is no greater than a factor bR of the
average CPU time for a function evaluation. By default bR is set to 0.5. In Fig. 10 we investigate the effect of the parameter bR

on performance. As may be seen, with the very small value bR ¼ 0:001 there is a clear degradation in performance. For bR

between 0.1 and 0.9 there is a modest dependence of query time and table size in bR, with bR ¼ 0:5 generally being near
optimal.

6.5. Effect of the parameter controlling EOA growth

The ellipsoids of accuracy (EOAs) are initialized conservatively. The subsequent growth of the EOAs is essential to the effi-
ciency of ISAT, but it can also result in large incurred errors.
1 2 3 4 5 6
x 10−4

0

200

400

600

800

1000

1200

1400
1

2

3

4

1

2

3
4

1

2

3
4

ε
0.9

t Q
 (

μ
se

c.
)

a
Skeletal

2 4 6 8 10
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 104

1

2

3

4

1

2

3

4

1

2

3

4

ε
0.9

t Q
 (

 μ
 s

ec
.)

GRI3.0

1 2 3 4 5 6
x 10−4

0

20

40

60

80

100

120

140
1

2

3
4

1
2

3
4

1

2

3
4

ε
0.9

t R
 (

 μ
 s

ec
.)

b
Skeletal

2 4 6 8 10
x 10−4

20

40

60

80

100

120

140

160

180

200
1

2

3

4

1

2

3
4

1

2

3
4

ε
0.9

ε
0.9 ε

0.9

t R
 (

 μ
 s

ec
.)

GRI3.0

1 2 3 4 5 6
x 10−4

0

2

4

6

8

10

12

14

16

18 x 104

1

2

3

4

1

2

3

4

1

2

3

4

A
dd

s

c
Skeletal

2 4 6 8 10
x 10−4

0

0.5

1

1.5

2

2.5

3

3.5

4 x 104

12

3

4

1 2

3

4

1

2

3

4

A
dd

s

GRI3.0

Fig. 12. For the PaSR test, the effect of different strategies (mode=1, 2, 3, or 4) taken to resolve the conflict between EOAs and EOIs: (a) CPU time ls per
query, (b) CPU time ls per retrieve, and (c) number of adds against the 90% error. Left column: skeletal mechanism with etol ¼ 2� 10�4 (red),
etol ¼ 3� 10�4 (blue) and etol ¼ 4� 10�4 (green), and each calculation results in 3:0� 107 queries; right column: GRI3.0 mechanism with etol ¼ 4� 10�4

(red), etol ¼ 5� 10�4 (blue) and etol ¼ 6� 10�4 (green). The numbers next to the symbols indicate the mode used. The number of table entries allowed
is sufficiently large and the table is not full for all the calculations. Each calculation results in 1:2� 106 queries. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 379
As described in Section 4, in a given query, if the retrieve attempts fail, then the EBT of PEOIs is traversed to identify a set of
leaves whose EOIs cover the query point. Then, for each leaf so identified, the EOI or the corresponding EOA is modified. The
amount of CPU time spent on this search is limited to be no greater than a factor bG of the average time of a function evaluation.

Fig. 11 shows the effects of different values of bG on the performance of ISAT. It is clear that increasing bG from 0.5 to 1.0 is
significantly beneficial in reducing both average query time and the number of table entries. The values bG ¼ 2;3 and 4 all
appear to be close to optimal, and superior to bG ¼ 1. The default value of bG ¼ 2 yields an average query time within 25% of
optimal for all cases studied.

6.6. Effect of the treatment of EOA/EOI conflicts

When a leaf is initialized, the EOI covers the EOA. Subsequently, after the EOA is grown, or the EOI is modified, it is pos-
sible that part of the EOA is no longer covered by the EOI, a situation which is referred to as a ‘‘conflict”: the uncovered part of
the EOA is deemed to be both accurate and inaccurate. We regard a conflict, not as a contradiction or inconsistency, but as a
manifestation of the shortcomings of the EOA and EOI to represent the regions of accuracy and inaccuracy.

We have investigated four different strategies for treating conflicts, which are referred to as modes 1, 2, 3 and 4. They are
defined as follows:

1. Restore the EOA to its state immediately prior to the conflict; do not allow further growing of the EOA (i.e., on subsequent
queries).

2. Shrink the EOA to be covered by the EOI; do not allow further growing of the EOA.
3. Shrink the EOA to be covered by the EOI; allow further growing of the EOA.
4. Do not modify the EOA (nor the EOI), so that the conflict remains; allow further growing of the EOA.

Fig. 12 shows the performance of ISAT using each of these modes. It is clear that, as may be expected, modes 1 and 2 result
in the smallest errors, but at a considerable cost in CPU time per query and number of table entries. For a fixed value of the
incurred error, e0�9, it is clear that mode 4 is best in yielding the smallest query times and table sizes, with mode 3 being
marginally inferior. Accordingly, mode 4 is taken as the default.

6.7. Effect of the frequency of error checking and correction

As described in Section 4.5, on randomly selected queries resulting in successful retrieves, error checking and correction
(ECC) is performed. This process not only eliminates the error on the query in question, but also prevents (or at least de-
creases the chances of) inaccurate approximations on subsequent queries with similar values of xq. ECC is an expensive pro-
cess due to the extra direct evaluations required. Two variants, denoted ECC-Q and ECC-G, have been implemented and
tested in which the frequency of ECC is controlled relative to queries or grow events, respectively.

In ECC-Q, the frequency of ECC is controlled so that the CPU time consumed in ECC is less than a specified fraction fQ of
the total CPU time. Fig. 13 shows results demonstrating the performance of ISAT with different values of fQ . The results come
from a series of PaSR calculations with the skeletal mechanism, each calculation resulting in 1:0� 108 queries. There are 18
separate tests corresponding to all combinations of etol ¼ 1� 10�4;2� 10�4;3� 10�4 and fQ ¼ 0;0:01;0:03;0:1;0:3;0:5. For
etol ¼ 3� 10�4 and fQ ¼ 0, the incurred error e0:9 is a little less than 10�3. Increasing fQ from 0 to 0:01 results in more
than halving e0:9 with a negligible CPU penalty. As fQ is increased, e0:9 decreases, but the CPU time increases. Notice that
0 0.2 0.4 0.6 0.8 1
x 10−3

0

50

100

150

200

250

300

0
0.010.03

0.1
0.3 00.01

0.03
0.1

0.3

0
0.01

0.03
0.1

0.3

ε
0.9

t Q
 (

 μ
 s

ec
.)

Fig. 13. For the PaSR test with the 16-species skeletal mechanism, the CPU time ls per query against the 90% error of ISAT with ECC-Q. Error tolerance
etol ¼ 1� 10�4 (black), 2� 10�4 (blue), 3� 10�4 (red); the numbers 0, 0.01, 0.03, 0.1, 0.3 indicate the value of fQ controlling the amount of ECC
performed. The number of table entries allowed is sufficiently large and the table is not full for all the calculations. Each results in 1:0� 108 queries. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0 0.2 0.4 0.6 0.8 1
x 10−3

0

0.5

1

1.5

2 x 105

0
0.01

0.030.10.3

00.01
0.030.1

0.3

00.01
0.03

0.1

0.3

ε
0.9

A
dd

s

Fig. 14. For the PaSR test with the 16-species skeletal mechanism, the number of adds against the 90% error of ISAT with ECC-Q. Error tolerance
etol ¼ 1� 10�4 (black), 2� 10�4 (blue), 3� 10�4 (red); the numbers 0, 0.01, 0.03, 0.1, 0.3 indicate the value of fQ controlling the amount of ECC
performed. The number of table entries allowed is sufficiently large and the table is not full for all the calculations. Each calculation results in 1:0� 108

queries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

380 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
the optimal performance corresponds to the envelop of the different curves. The optimal value of fQ is around 0.1. With this
value, the CPU time required to achieve a given value of e0:9 is about halved (compared to using fQ ¼ 0, i.e, without ECC).

Fig. 14 demonstrates the effect of ECC on the number of table entries required for ISAT. The important observation is that
the use of ECC can significantly reduce the number of table entries required for a given incurred error. As may be seen from
the figure, about the same error is incurred for the following three cases etol ¼ 1� 10�4 with fQ ¼ 0, etol ¼ 2� 10�4 with
fQ ¼ 0:03, and etol ¼ 3� 10�4 with fQ ¼ 0:3; however the storage required is in the ratio 4:2:1.

Figs. 15 and 16 show the corresponding results for a test case using the GRI mechanism. There are in total 24 separate
tests corresponding to all combinations of etol ¼ 5� 10�4;6� 10�4;7� 10�4;8� 10�4 and fQ ¼ 0, 0.01, 0.03, 0.1, 0.3, 0.5.
For etol ¼ 8� 10�4 and fQ ¼ 0, the incurred error e0:9 is a little less than 1:6� 10�3. Increasing fQ from 0 to 0.03 to 0.1 results
in reducing e0:9 by 30% and 45%, respectively, with an acceptable CPU penalty. As fQ is increased, e0:9 decreases, but the CPU
time increases, which illustrates the computational penalty incurred to achieve high accuracy. The optimal value of fQ is
around 0.1. Fig. 16 demonstrates the effect of ECC on the table size. As observed for the skeletal mechanism, the use of
ECC can reduce by about a factor of 2 the number of table entries required for a given incurred error.

As shown above, ECC-Q (with the ECC frequency based on the total CPU time) achieves a significant gain in computational
performance for the cases where a sufficiently large storage is allowed for the ISAT table. However, with limited storage al-
lowed for the ISAT, some pathological cases are observed where, due to the excessive shrinking of EOAs caused by ECC, an
undesirable sharp increase in direct function evaluations is observed after the table is full, which severely degrades the over-
all computational performance. To remedy this problem, the second variant, ECC-G, is introduced in which the frequency of
ECC is controlled so that the number of ECC events is less than a specified fraction fG of the number of grow events.
0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−3

50

100

150

200

250

300

350

00.010.03
0.1

0.3

0.5

00.010.030.1

0.3

0.5

00.01
0.030.1

0.3

0.5

0
0.010.03

0.1

0.3

0.5

ε
0.9

t Q
 (

 μ
 s

ec
.)

Fig. 15. For the PaSR test with the GRI3.0 mechanism, CPU time (ls) per query against the 90% error of ISAT with ECC-Q. Error tolerance etol ¼ 5� 10�4

(cyan), 6� 10�4 (black), 7� 10�4 (blue), 8� 10�4 (red); the numbers 0, 0.01, 0.03, 0.1, 0.3, 0.5 indicate the value of fQ controlling the amount of ECC
performed. The number of table entries allowed is sufficiently large and the table is not full for all the calculations. Each calculation results in 1:5� 108

queries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−3

6000

7000

8000

9000

10000

11000

12000

13000

0
0.010.03

0.10.30.5

0
0.010.03

0.10.30.5

00.01
0.03

0.1
0.3

0.5

0

0.01

0.03

0.1

0.3
0.5

ε
0.9

A
dd

s

Fig. 16. For the PaSR test with the GRI3.0 mechanism, the number of adds against the 90% error of ISAT with ECC-Q. Error tolerance etol ¼ 5� 10�4 (cyan),
6� 10�4 (black), 7� 10�4 (blue), 8� 10�4 (red); the numbers 0, 0.01, 0.03, 0.1, 0.3, 0.5 indicate the value of fQ controlling the amount of ECC
performed. The number of table entries allowed is sufficiently large and the table is not full for all the calculations. Each calculation results in 1:0� 108

queries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0 2 4 6 8
x 10−4

20

40

60

80

100

120

140

160

180

0
0.01

0.03

0.1

0.3
0.5

00.01
0.03

0.1
0.3

0.5

0
0.010.030.10.30.5

ε
0.9

t Q
 (

μ
se

c.
)

a
Skeletal

2 4 6 8 10 12 14
x 10−4

100

150

200

250

300

350

400

0
0.01

0.030.1

0.3

0.5

00.010.03
0.1

0.3

0.5

00.01
0.030.1

0.3

0.5

00.010.03
0.1

0.3
0.5

ε
0.9

t Q
 (

μ
se

c.
)

GRI3.0

0 2 4 6 8
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 105

0
0.01

0.03
0.1

0.30.5

00.010.030.1
0.3

0.5

00.010.030.10.3
0.5

ε
0.9 ε

0.9

A
dd

s

b
Skeletal

2 4 6 8 10 12 14
x 10−4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6 x 104

00.01

0.03
0.1

0.3
0.5

0
0.010.030.1

0.3
0.5

00.01
0.03

0.10.30.5

00.010.030.10.30.5

A
dd

s

GRI3.0

Fig. 17. For the PaSR test, the effect of ECC-G on ISAT performance: (a) CPU time ls per query and (b) number of adds against the 90% error. Left column:
skeletal mechanism with etol ¼ 1� 10�4 (red), 2� 10�4 (blue), 3� 10�4 (black); right column: GRI3.0 mechanism with etol ¼ 3� 10�4 (red), 4� 10�4

(blue), 5� 10�4 (black) and 6� 10�4 (cyan). The numbers 0, 0.01, 0.03, 0.1, 0.3 and 0.5 indicate the value of fG controlling the amount of ECC performed.
The number of table entries allowed is sufficiently large and the table is not full for all the calculations. Each results in 1:2� 108 queries. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 381
Fig. 17 shows results demonstrating the performance of ISAT ECC-G for different values of fG. The results come from a
series of PaSR calculations with both the skeletal and GRI3.0 mechanisms, each calculation resulting in 1:2� 108 queries.
For the skeletal mechanism, there are 18 separate tests corresponding to all combinations of etol ¼ 1� 10�4;

2� 10�4;3� 10�4 and fG ¼ 0, 0.01, 0.03, 0.1, 0.3, 0.5. For the GRI3.0 mechanism, there are 24 separate tests corresponding
to all combinations of etol ¼ 3� 10�4;4� 10�4;5� 10�4;6� 10�4 and fG ¼ 0, 0.01, 0.03, 0.1, 0.3, 0.5. As observed for ECC-Q,

382 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
the use of ECC-G can significantly reduce both the average query CPU time and the number of table entries required for a
given incurred error. For example, for the GRI3.0 mechanism, for etol ¼ 3� 10�4 and fG ¼ 0, the incurred error e0:9 is about
8� 10�4. Increasing fG from 0 to 0.1 results in about halving e0:9 with a negligible CPU penalty. As fG is increased, e0:9 de-
creases, but the CPU time increases. Notice that the optimal performance corresponds to the envelop of the different curves.
The optimal value of fG is between 0.1 and 0.3. With this value, the CPU time required to achieve a given value of e0:9 is about
halved (compared to using fG ¼ 0).

In summary, the ECC augmentation to the ISAT algorithm produces a significant decrease both in the ratio of e0:9=etol and
in the number of table entries required for a given incurred error. For the first variant ECC-Q, where the frequency of ECC is
controlled by the query time, the optimal value of fQ is about 0.1 and it incurs a modest additional computational cost. For
the second variant ECC-G, where the frequency of ECC is controlled by the number of grow events, the optimal value of fG is
between 0.1 and 0.3, and it incurs a negligible computational cost.

Nearly all of the tests reported in this paper were performed using ECC-Q, before the advantages of ECC-G were appre-
ciated. Specifically, with the exception of the results reported in this subsection and the next, all of the tests reported in this
paper used ECC-Q with fQ ¼ 0:1. However, the preferred variant is ECC-G, with fG=0.1.

6.8. Comparison of implementations

Prior to the present work, several significant improvements were made to the original ISAT algorithm (but these have not
been documented in the literature). To distinguish different implementations, the algorithm described in this paper is des-
ignated ISAT5, and its immediate predecessor is ISAT4. In this sub-section, we make comparisons in the performance of these
two implementations.

In contrast to ISAT5, ISAT4 does not use affine spaces, EOIs, MFU, MRU or EBTs. The retrieve search uses the binary tree in
two ways. First (as in the original algorithm and in ISAT5), the binary tree is traversed to identify the primary leaf: this is
called a ‘‘primary retrieve” attempt. If this fails (i.e., the query point is not covered by the EOA of the primary leaf) then a
‘‘secondary retrieve” is performed, which consists of successively testing neighboring leaves. As with the EBT in ISAT5,
the amount of secondary retrieving is limited based on CPU time.

For both the PaSR test cases, we examine the relative performance of ISAT4 and three variants of ISAT5. There are: ISAT5-
N (ISAT5 without ECC); ISAT5-Q (ISAT5 with the ECC frequency based on queries, fQ ¼ 0:1); ISAT5-G (ISAT5 with the ECC
frequency based on grow events, fG ¼ 0:1). We first investigate the local error incurred by different implementations of ISAT
through an examination of the 90% error, e0:9, and the cumulative distribution function (CDF) of the incurred error. To obtain
the CDF without too large a computational penalty, during the PaSR calculations, we perform an accuracy test every 1000
retrieves. That is, every 1000 retrieves, not only is ISAT used to determine the linear approximation to the reaction mapping,
f lðxqÞ, but also the exact mapping fðxqÞ is obtained by the computationally expensive direct evaluation so that the local error
e can be measured directly. Then the CDF of the local error is constructed based on the samples of e. For each PaSR calculation
performed, more than 105 samples of the local error e are obtained.

Fig. 18 shows the 90% error e0:9 against the user-specified error tolerance etol for the four different implementations of
ISAT considered. As may be seen from the figure, for a given implementation of ISAT and for a given test case, e0:9 varies
monotonically with etol (almost linearly for small values of etol), but the ratio e0:9=etol can be affected by the particulars of
the implementation. For a given user-specified error tolerance etol, the incurred error e0:9 is significantly less with ISAT5 than
with ISAT4. The two ECC methods considered achieve comparable performance. In other words, the new algorithms in ISAT5
(especially ECC and EOI) are very effective in controlling the incurred local error. Hence to achieve the same incurred error,
one can specify a much larger error tolerance etol in ISAT5 than in ISAT4. For example, for the same incurred error
e0:9 ¼ 10�3; etol in ISAT5 with ECC can be about five times larger than in ISAT4 for both test cases.
10−5 10−4 10−3 10−210−5

10−4

10−3

10−2

εtol

ε 0.
9

a

10−5 10−4 10−3 10−210−4

10−3

10−2

εtol

ε 0.
9

b

Fig. 18. The 90% error against the user-specified error tolerance from different implementations of ISAT for (a) the skeletal mechanism and (b) the GRI3.0
mechanism. Symbol
, ISAT4; 	, ISAT5-N; +, ISAT5-Q (fQ ¼ 0:1); �, ISAT5-G (fG ¼ 0:1). Each calculation results in 1:2� 108 queries.

10−4 10−2 100 10210−4

10−3

10−2

10−1

100
ISAT4

y/ε
ref

1−
F(

y)
 =

 P
ro

b(
 ε

 >
=

y
)

10−4 10−2 100 10210−4

10−3

10−2

10−1

100
ISAT5−N

y/ε
ref

10−4 10−2 100 10210−4

10−3

10−2

10−1

100
ISAT5−Q

y/ε
ref

Fig. 19. CDF of local error against y=eref with eref ¼ e0:9 from different implementations of ISAT (ISAT4, ISAT5-N, ISAT5-Q) for the GRI3.0 mechanism. Dotted
line: etol ¼ 2�8; dashed line: etol ¼ 2�9; solid line: etol ¼ 2�10. Each calculation results in 1:2� 108 queries. The ECC shown is ECC-Q, which is based on the
query time.

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 383
Fig. 19 shows the CDF of incurred local error for different implementations of ISAT with three different values of error
tolerance etol. The quantity 1� FðyÞ ¼ Probfe P yg is shown to focus on the larger errors. From this figure, we see that long
tails exist for the plot 1� FðyÞ associated with all three implementations of ISAT. This clearly shows that none of the imple-
mentations exhibits excellent error control associated with a sharp cut-off in the shape of 1� FðyÞ at the specified error tol-
erance. (Notice that the CDF is plotted against the incurred error normalized by the 90% error e0:9. The observations on the
10−5 10−4 10−3 10−21.5

2

2.5

3

3.5

4

4.5

5

ε 0.
99

/ε
0.

9

ε0.9

a
Skeletal

10−4 10−3 10−22

2.5

3

3.5

4

4.5

5

ε 0.
99

/ε
0.

9

ε0.9

GRI3.0

10−5 10−4 10−3 10−22

4

6

8

10

12

14

ε 0.
99

9/ε
0.

9

ε0.9

b

10−4 10−3 10−24

6

8

10

12

14

ε 0.
99

9/ε
0.

9

ε0.9

GRI3.0

Fig. 20. For different implementations of ISAT, (a) the ratio of e0:99=e0:9 and (b) the ratio of e0:999=e0:9 against the 90% error. Left column: skeletal mechanism;
right column: GRI3.0 mechanism. Symbol
, ISAT4; 	, ISAT5-N; +, ISAT5-Q (fQ ¼ 0:1); �, ISAT5-G (fG ¼ 0:1). Each calculation results in 1:2� 108 queries.

10−5 10−4 10−3 10−2100

101

102

103

ε0.9

t Q
 (μ

 se
c.

)

a

10−5 10−4 10−3 10−2100

101

102

103

St
or

ag
e

us
ed

 b
y

th
e

IS
A

T
ta

bl
e

(M
b)

ε0.9

b

Fig. 21. For the PaSR test with the 16-species skeletal mechanism, comparison of different ISAT implementations (a) CPU time ls per query; (b) storage
required (megabytes) against the 90% error. Symbol
, ISAT4; 	, ISAT5-N; +, ISAT5-Q (fQ ¼ 0:1); �, ISAT5-G (fG ¼ 0:1). Each calculation results in 1:2� 108

queries. The allowed storage of 600 megabytes was reached for some cases.

384 L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386
CDF do not contradict the conclusion that for a given user-specified error tolerance etol, the incurred error e0:9 is significantly
less with ISAT5 than with ISAT4 as shown in Fig. 18.) Also Fig. 19 shows that etol does not have a significant effect on the
behavior in the tail of the curve 1� FðyÞ when plotted against y=eref even though ISAT5 with ECC produces less variation
in the tail among different error tolerances. (The results for ISAT5-G [not shown] are similar to those for ISAT-Q.)

We further examine the tail of the CDF of the incurred error by studying the ratios e0:99=e0:9 and e0:999=e0:9, where e0:99 and
e0:999 are the 99% and the 99.9% errors. Fig. 20 shows these ratios against the 90% error from different implementations of
ISAT for both the skeletal and the GRI3.0 test cases. As may be seen from the figure, for ISAT4, there is a large variation
in these ratios. The mean over the range of the 90% error considered is about 3.2 and 8 for e0:99=e0:9 and e0:999=e0:9, respec-
tively. Thus, roughly speaking, there is a 0.1% probability of the incurred error exceeding 8 times the reference error, e0:9

The new implementation ISAT5, particularly ISAT5 with ECC, significantly reduces the fluctuations in these ratios. There
is a slight improvement in the means of these ratios over the range of the 90% considered, which implies that the tail of
the error distribution is narrower for ISAT5 than for ISAT4. In other words, ISAT5 (with or without ECC) incurs fewer large
errors than ISAT4. (The quantity e0:999=e0:9 inevitably contains some level of statistical error.)

We turn now to examine the performance in terms of CPU time per query and the size of the table generated. It is again
stressed that the performance of different algorithms and implementations must be made at a fixed incurred error e0:9, not at
a fixed error tolerance etol.

For the PaSR tests, the average CPU time per query and the storage used by the ISAT table for different implementations of
ISAT are shown in Figs. 21 and 22. As may be seen, for both the skeletal and GRI3.0 test cases, ‘‘error checking and correction”
(ECC) improves the performance of ISAT, substantially so for storage. Moreover ISAT5-G (with ECC based on the number of
grows) outperforms ISAT5-Q (with ECC based on the query time) in terms of computational efficiency and storage.

ISAT5-G is computationally slightly more efficient than ISAT4, especially for the more demanding test case. For the 16-
species skeletal mechanism, at the incurred error e ¼ 1� 10�3, the CPU time per query is about in the ratio 1.3:1 for ISAT4
and ISAT5-G. For the 53-species GRI3.0 mechanism, at the incurred error e ¼ 1� 10�3, the CPU time per query is about in the
10−4 10−3 10−2101

102

103

ε0.9

t Q
 (μ

 se
c.

)

a

10−4 10−3 10−2

101

102

103

St
or

ag
e

us
ed

 b
y

th
e

IS
A

T
ta

bl
e

(M
b)

ε0.9

b

Fig. 22. For the PaSR test with the 53-species GRI3.0 mechanism, figure showing of different ISAT implementations (a) CPU time ls per query against 90%
error and (b) storage required (megabytes) against 90% error. Symbol
, ISAT4; *, ISAT5 without ECC; +, ISAT5 with ECC-Q (f=0.1); �, ISAT5 with ECC-G
(f=0.1) Each calculation results in 1:2� 108 queries.The allowed storage of 600 megabytes was reached for some cases.

L. Lu, S.B. Pope / Journal of Computational Physics 228 (2009) 361–386 385
ratio 2:1 for ISAT4 and ISAT5-G. (The incurred error e ¼ 1� 10�3 is significant in the sense that this small incurred error is
found to be sufficient to guarantee the numerically accurate prediction of all species in computations of the turbulent meth-
ane/air flames considered in [3].)

Another important observation is that ISAT5-G reaches the specified allowed storage at a much smaller incurred error
than ISAT4. For example, for the 53-species GRI3.0 mechanism, ISAT4, ISAT5-N, and ISAT5-G reach the allowed storage at
about e0:9 ¼ 1� 10�3;8� 10�4, and 4� 10�4, respectively. For a given incurred error, ISAT5-G significantly reduces the
amount of storage used. For both the 16-species skeletal mechanism and the 53-species GRI3.0 mechanism, at the incurred
error e0:9 ¼ 1� 10�3, the amount of storage used is about in the ratio 5:2.4:1 for ISAT4, ISAT5-N, and ISAT5-G. This has sig-
nificant practical importance because ISAT5-G can significantly alleviate the storage constraint on ISAT when applied to chal-
lenging reactive flows where large storage is required.

7. Conclusions

In situ adaptive tabulation (ISAT) has proved to be an effective method to reduce the computer time required to evaluate
(approximately) high-dimensional functions, fðxÞ. In this paper, several new algorithms for ISAT are described and demon-
strated. These include: new search strategies (MRU, MFU, EBT); the use of low-dimensional affine spaces to reduce the cost of
searching; ellipsoids of inaccuracy (EOIs) to identify candidates for growing; and error checking and correction (ECC).

The performance of the improved ISAT algorithm has been examined and compared to that of a previous version for two
test cases of a partially-stirred reactor (PaSR). The dimensions of the two test cases are nx ¼ nf ¼ 17 (for the skeletal mech-
anism) and nx ¼ nf ¼ 54 (for the GRI mechanism).

The principal conclusions from the tests are as follows.

(a) In comparing different algorithms it is essential to do so at a fixed value of the incurred error (not at a fixed error
tolerance).

(b) For a given ISAT problem involving very many queries, the average query time tQ depends strongly on the allowed
number of table entries, A, if this is less than a critical value, A	 (defined by Eq. (29)).

(c) The use of a low-dimensional (na < 5) affine space in searching is beneficial in reducing the time and storage by, typ-
ically, factors of 3 and 2, respectively.

(d) All search strategies (BT, MRU, MFU, EBT) are advantageous, and it is optimal to use them in order of increasing effec-
tive cost (i.e., time per successful retrieve).

(e) The EBT search is particularly effective. It is generally near optimal to limit the amount of EBT searching to consume at
most half of the time for a direct function evaluation.

(f) The use of error checking and correction (ECC) typically halves the computer time required (for given incurred error).
(g) For the more challenging GRI test case, the CPU time and storage required by the improved version of ISAT (ISAT5-G) is

smaller than that required by the previous version (ISAT4) by factors of 2 and 5, respectively.
Acknowledgments

For technical discussions and suggestions, the authors are grateful to several colleagues at Cornell, especially to Bisw-
anath Panda, Zhuyin Ren and Paul Chew. This research was supported in part by the National Science Foundation through
Grant CBET-0426787. This research was conducted using the resources of the Cornell University Center for Advanced Com-
puting, which receives funding from Cornell University, New York State, the National Science Foundation, and other leading
public agencies, foundations, and corporations.

References

[1] S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Modell. 1 (1997) 41–
63.

[2] S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985) 119–192.
[3] B.J.D. Liu, S.B. Pope, The performance of in situ adaptive tabulation in computations of turbulent flames, Combust. Theory Modell. 9 (2005) 549–568.
[4] M.A. Singer, S.B. Pope, H.N. Najm, Modeling unsteady reacting flow with operator-splitting and ISAT, Combust. Flame 147 (2006) 150–162.
[5] M.A. Singer, S.B. Pope, H.N. Najm, Operator-splitting with ISAT to model reacting flow with detailed chemistry, Combust. Theory Modell. 10 (2006)

199–217.
[6] R. Cao, H. Wang, S.B. Pope, The effect of mixing models in PDF calculations of piloted jet flames, Proc. Combust. Inst. 31 (2007) 1543–1550.
[7] Q. Tang, W. Zhao, M. Bockelie, R.O. Fox, Multi-environment probability density function method for modelling turbulent combustion using realistic

chemical kinetics, Combust. Theory Modell. 11 (2007) 889–907.
[8] S. James, J. Zhu, M.S. Anand, Large eddy simulations of turbulent flames using the filtered density function model, Proc. Combust. Inst. 31 (2007) 1737–

1745.
[9] B. Merci, B. Naud, D. Roekaerts, Impact of turbulent flow and mean mixture fraction results on mixing model behavior in transported scalar PDF

simulations of turbulent non-premixed bluff body flames Flow, Turbulence Combust. 79 (2007) 41–53.
[10] R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow, Combust.

Theory Modell. 11 (2007) 351–376.
[11] S. Mazumder, Modeling full-scale monolithic catalytic converters: challenges and possible solutions, J. Heat Trans. 129 (2007) 526–535.
[12] N.H. Kolhapure, R.O. Fox, A. Dai, F.-O. Mahling, PDF simulations of ethylene decomposition in tubular LDPE reactors, AIChE J. 51 (2005) 585–606.
[13] J.J. Shah, R.O. Fox, Computational fluid dynamics simulation of chemical reactors: Application of in situ adaptive tabulation to methane

thermochlorination chemistry, Ind. Eng. Chem. Res. 38 (1999) 4200–4212.

P4o(2m280(T.F.)-2857(ISA)1(T,)]T3d
[(Gustavo)-1e7(a4mePRFstavSea5(dalaRSm943(AlonseSea5(dhei,)]ll.)8-ai(11)-38am9438a16aiCombuca18aPz79(11)8(dhei,)]ll.)8a8a16or)-270broabase)e16ongs1)-38a-329Sea55 Td
3(Al32lijk8a8a[([20])-481(J.-hei,476(Ch)-487(251(ten,)3nfercti388(growthYoun86(CLar)-323e,)D -1r)-266B24571(dat4(Seoul,64(UmeKo3(A,mensioSepdapberr)-26612-267(5,64(Umeindu,323e,)pp.(dat4(5hwar)-534r)-266(ACM,Panda,inducehock)-334(focusing)-327(usi4Whang,)-2711.24id)-261(30(SM.n,)-33)2(t,)]TJ
2.n,)-243(358nso,)-240()-33-1.245Anal[(Gusta)-33High-sperke,)60urne,)-326(Australia,)-332(2003.-33J
-2.359base)e16ongs1)60u5 Td
[ust7 IEEE1(30(S[([20])-481(J.-Y58n476(Ch)-487(
2.37n.-Y58nDa.P.-1r70(Chew,)-263(IndexingMin68(PopecienICDM323e,)in:)-2mprovemOctoberr)-2-488ar)-31,64(Umeind7,323e,)OmahamprovemNebraska1(dat4(USA,323e,)pp.(dat4(61war)-618r)-266(IEEE1(328onal)-3err)-)-2So26(ty-326(Thin:)-2(Dayal,)-267(Kyu-Young)-2625Whang,)F,)]TJ
5
[14] A. Arsenlis, N.R. Barton, R. Beckera, R.E. Rudda, Generalized in situ adaptive tabulation for constitutive model evaluation in plasticity, Comp. Methods
Appl. Mech. Eng. 196 (2006) 1–13.

[15] J.D. Hedengren, T.F. Edgar, Approximate nonlinear model predictive control with in situ adaptive tabulation, Comput. Chem. Eng. 32 (2008) 706–714.
[16] A. Varshney, A. Armaou, Multiscale optimization using hybrid PDE/kMC process systems with application to thin film growth, Chem. Eng. Sci. 60

(2005) 6780–6794.
[17] S. Mazumder, Adaptation of the in situ adaptive tabulation (ISAT) procedure for efficient computation of surface reactions, Comput. Chem. Eng. 30

(2005) 115–124.
[18] J.-Y. Chen, J.A. Blasco, N. Fueyo, C. Dopazo, An economical strategy for storage of chemical kinetics: fitting in situ adaptive tabulation with artificial

neural networks, Proc. Combust. Inst. 28 (2000) 115–121.
[19] I. Velijkovic, P.E. Plassmann, D.C. Haworth, A scientific on-line database for efficient function approximation, in: 2003 International Conference on

Computational Science, Saint Petersburg, Russian Federation and Melbourne, Australia, 2003.
[20] J.-Y. Chen, Analysis of in situ adaptive tabulation performance for combustion chemistry and improvement with a modified search algorithm,

Combust. Sci. Technol. 176 (2004) 1153–1169.
[21] I. Velijkovic, P.E. Plassmann, Parallel heuristics for an on-line scientific database for efficient function approximation, Appl. Parallel Comput.: State Art

Sci. Comput. 3732 (2006) 644–653.
[22] G. Dong, B.C. Fan, Y.L. Chen, Acceleration of chemistry computations in two-dimensional detonation induced by shock focusing using reduced ISAT,

Combust. Theory Modell. 11 (2007) 823–837.
[23] B. Panda, M. Riedewald, S.B. Pope, J. Gehrke, L.P. Chew, Indexing for function approximation, in: Umeshwar Dayal, Kyu-Young Whang, David B. Lomet,

Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, Young-Kuk Kim, edi(Coperforma1e5(Mar)a4man,)-o7.hEa1lai1M-277.hEa4p(7.hEha

http://www.me.berkeley.edu/gri_mech

	An improved algorithm for in?situ adaptive tabul
	Introduction
	Overview of the ISAT algorithm
	Retrieve search
	Ellipsoid covering test
	Affine space
	Efficacy of multiple search attempts
	Search methods

	EOA growing
	Region of accuracy
	Ellipsoid of inaccuracy (EOI)
	Grow Searchsearch
	EOA growth and EOI modification
	Incurred error and ECC

	Adding
	Initialization of the EOA
	Initialization of the EOI
	Insertion in the data structures
	Treatment of a full table

	Performance of ISAT
	The PaSR test case
	Effect of the limit on table size
	Effect of the dimensionality of the affine space
	Effect of operations and parameters controlling retrieve attempts
	Effect of the parameter controlling EOA growth
	Effect of the treatment of EOA/EOI conflicts
	Effect of the frequency of error checking and correction
	Comparison of implementations

	Conclusions
	AcknowledgementAcknowledgments
	References

